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Abstract

Score based stochastic differential equation (SDE) diffusion models learn to reverse
the progressive noising of a data distribution to create a generative model and
have demonstrated impressive performance across a wide range of tasks. The
method relies on a Gaussian distributed Ornstein–Uhlenbeck (OU) process, which
can naturally model continuous data in Rn, but does not naturally transfer to
discrete data. To apply score based diffusion to discrete data, we propose logistic-
normal diffusion which is defined on the probability simplex. Using the probability
simplex naturally creates an interpretation where points correspond to categorical
probability distributions. We use a process that is the softmax of the commonly
used OU diffusion, creating a one to on correspondence between diffusion on Rn

and the n dimensional unit simplex. We find that our methodology also naturally
extends to include diffusion on the unit cube which has applications for bounded
image generation. Furthermore, the connection between Logistic-Normal and
Gaussian Diffusion allows our model to utilize recent advances in SDE score
matching models.

1 Introduction

Diffusion models Sohl-Dickstein et al. [2015] Ho et al. [2020] Song and Ermon [2019] have emerged
as a well-established class of generative models, finding applications in image Dhariwal and Nichol
[2021], speech Jeong et al. [2021], and video Singer et al. [2022] domains. Score-based generative
stochastic differential equation (SDE) models Song et al. [2021] are a continuous time diffusion
model with additional desirable properties. For example, the methodology allows for flexible reverse
time solutions with arbitrary ordinary differential equation (ODE) solvers, as well as exact likelihood
evaluation via a connection with probability flow ODEs Chen et al. [2018]. All diffusion models
operate by progressively adding noise to data samples, which transforms a complex data distribution
into a simpler, easy-to-sample distribution. Parameterized models are then optimized to reverse the
noising process and generate new samples from the underlying data distribution.

In comparison to other popular methods, such as Generative Adversarial Networks Goodfellow
et al. [2014], and Variational Autoencoders Kingma and Welling [2022], continuous time diffusion
models present a compelling advantage as they have an exact likelihood interpretation and do not
require adversarial training that other state-of-the-art generative models require. That is, diffusion
models enjoy the benefit of having a more stable training process that avoid non-overlapping data and
generated distributions [Yang et al., 2023]. Time continuous diffusion models are also advantageous
over normalizing flows Rezende and Mohamed [2016] an appealing alternative that is also capable
of computing the exact likelihood. Normalizing flows face practical restrictions when computing
the determinant of the Jacobian from the change of variables formula , whereas the continuous
time interpretation allows for a far more flexible implementation by integrating the ODE divergence
through time Chen et al. [2018].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Most work with diffusion models uses Gaussian distributions, which is natural for data in Rn, however
this presents a problem for discrete data distributions. We propose a simple solution by associating n
discrete categories with the corners of the n-dimensional probability simplex, and in turn defining a
continuous time diffusion process in that space. By shifting from categories themselves, to the space
of probabilities over categories, we effectively turn a discrete problem into a continuous one. Given a
function σ that is twice-differentiable and a typical Gaussian diffusion process xt, we can find the
solution to the process given by σ(x) by using Ito’s Lemma. In other words, we simply make use of
a map that is twice differentiable between Rn and the probability simplex, which allows us to use
all the continuous time diffusion methodology to train a model on the probability simplex. This is
in contrast to a number of recent works which design continuous time diffusion based on the Beta
and Dirichlet distributions Zhou et al. [2023], Avdeyev et al. [2023], Richemond et al. [2022], with a
more complicated implementation process.

2 Backgound

2.1 Score-Based Generative Modeling with SDEs

Score matching as formulated by Song et al. [2021] is interested in constructing a diffusion process
{xt}Tt=0 that is indexed by a continuous time variable t. The goal is to have x0 ∼ p0 be a dataset of
i.i.d. samples, and xT ∼ pT be a distribution that is easy to sample from. The diffusion process can
be described by an Ito SDE

dx = f(x, t)dt+G(x, t)dw (1)

where w is the standard Wiener process (also know as Brownian motion), f(x, t) : Rd × [0, 1] → Rd

is the drift term and G(x, t) : Rd × [0, 1] → Rd×d is the diffusion matrix. The process maps a data
distribution, pt=0(xt) ∈ Rd into some limiting distribution pt=1(xt) that is easy to sample from
and independent from the data distribution. This is called the time forward diffusion process, and is
typically defined a priori, and not learnt. Classical results in the theory of stochastic processes then
tell us that the time reverse of this process is itself an SDE and obeys

dx =
{
f(x, t)−∇ · [G(x, t)G(x, t)⊤]−G(x, t)G(x, t)⊤∇x log pt(x)

}
dt+G(x, t)dw̄ (2)

where time now flows backwards from t = 1 to t = 0 and ∇·G(x) := [∇·g1(x), · · · ,∇·gd(x)]
⊤ for

a matrix-valued function G(x) = [g1(x), · · · ,gd(x)]
⊤. In common implementations like Gaussian

diffusion, the diffusion matrix is set to a position independent scalar, which results is the following
reverse time sde

dx = f(x, t)dx− 1

2
g(t)2∇ log pt(x)dt+ g(t)dw̄

The goal of diffusion models is to approximate the score ∇xlog pt(xt) and use the reverse SDE to
sample from the generative model. The score can be approximated by sθ(xt, t) which provides the
following objective

θ∗ = argminθEt∼U [0,1]Ex0∼p0(x)Ext∼p0t(xt|x0)λ(t)
[
∥sθ(xt, t)−∇xt log p0t(xt|x0)∥22

]
(3)

where λ(t) is a weighting function and pst(xt|xs) is the transition kernel from x(s) to x(t). We
note that a number of other objectives can be used to learn the score function Song et al. [2021].
A common practice when using diffusion models is to discretize time into uniform steps, which is
equivalent to markov chain probabilistic model approach from Ho et al. [2020].

2.2 The Logistic-Normal Distribution on the Probability Simplex

We would like to define a diffusion process on the unit simplex. Also known as the probability
simplex, this is the set of points that sum to 1 and are positive

{
x ∈ Rd

∣∣∣ ∑d
k=1 xk = 1, xk ≥ 0

}
.
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The probability simplex Sd is a d− 1 dimensional subset of Rd, given that the final component of
vectors on the simplex can be written as xd = 1−

∑d−1
k=1 xk. We can then consider the simplex as

being fully determined by the set of points that are positive and sum to less than or equal to 1:

Sd :=

{
x ∈ Rd−1

∣∣∣∣∣
d−1∑
k=1

xk ≤ 1, xk ≥ 0

}
.

where we can always recover the final redundant component of the vector.

The logistic-normal distribution is an example of a probability distribution over the probability
simplex. It is defined as the probability distribution of a random variable whose multinomial logit is a
normal distribution, or equivalently it is the distribution of the softmax function applied to a Gaussian.
The probability density function of the logistic normal is

p(x;µ,Σ) =
1

|(2π)d−1Σ|
1

(1− ∥x∥1)
∏d−1

i=1 xi

exp

(
−1

2

[
log

(
x

1− ∥x∥1

)
− µ

]⊤
Σ−1

[
log

(
x

1− ∥x∥1

)
− µ

]) (4)

where x ∈ Sd. In the d = 2 dimensional case, the distribution can be understood as mapping a
Gaussian distribution on R to [0, 1] via the sigmoid function.

Figure 1: Examples of the Logistic-Normal distribution probability distribution function on S3 with
parameters µ = [0, 0], [0.2, 0.35] and σ = [0.5, 0, 5], [0.6, 0.8] respectively.

To constructively sample from this distribution, we map a point z ∈ Rd−1 to a point in the probability
simplex x ∈ Sd using the additive logistic transformation σ : Rd−1 → Sd defined by

x = σ(z) :=
ez

1 + e∥x∥1
(5)

Conversely, the unique inverse map from Sd to Rd−1 is:

z = σ−1(x) := log

[
x

1− ∥x∥1

]
The logistic-normal distribution is similar to the more common Dirichlet distribution defined on the
probability simplex. It should be noted that these distribution families are never exactly identical for
any choice of parameters.
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3 Method

3.1 Logistic-Normal Diffusion

To perform score-based generative modelling on the probability simplex, we can use the commonly
used Gaussian diffusion and push it forward to the simplex Sd. Typically, Gaussian diffusion is
defined as the following OU process on Rd:

dz = −1

2
β(t)z dt+

√
β(t) dw

where the function β(t) is a user-selection function that controls the signal to noise ratio during the
process, and w is a standard Brownian motion.

Given the observation that Sd is a d− 1 dimensional subset of Rd, we would like σ(z) to map vectors
in Rd−1 to the first d− 1 dimensions of the simplex. We will use the convention where only the first
d− 1 components of z are written, with the understanding that the last component is always fully
determined. We would like the diffusion process on the probability simplex to also take the form of
an Ito SDE dx = f(x, t) dt+G(x, t) dw. To derive this form, we can use Ito’s Lemma to find the
forward process SDE for x:

dxi = σi(z) =

{
−1

2
β(t)(∇zσi(z))

⊤z+
1

2
β(t) Tr [Hzσi(z)]

}
dt+

√
β(t)(∇zσi(z))

⊤ dwi (6)

where Hz is the Hessian with respect to z. This relationship shows that there are equivalent processes
that operate on Rd−1 with Gaussian diffusion and Sd with logistic-normal diffusion. Derivations of
these terms are in Appendix A.1. In summary we can write the drift term for the forward time process
as:

f(x) =
1

2
β(t)

[
x− 2x2 + ∥x(1− 2x)∥1 x− 1√

β(t)
G(x, t)σ(x)−1

]

and the diffusion matrix as:

G(x, t) =
√

β(t)Jzσ(z)

(Jzσ(z))i,j =

{
xi(1− xi) if i = j

−xixj if i ̸= j

With the definition of the forwards time process on the probability simplex, we can now derive reverse
time process dx = f(x, t)dt − 1

2∇ · [G(x, t)G(x, t)⊤]dt − 1
2G(x, t)G(x, t)⊤∇xlog pt(x)dt +

G(x, t)dw̄. The full process for this is worked out in Appendix A.2 and summarized below. First,
the diffusion matrix divergence can be written as:

∇x · [Gt(x)Gt(x)
⊤] = βx [−(d− 2)x+ (d+ 2)∥x∥2 − 2∥x∥1 + 2]

and finally the log derivative, or score or the logistic normal distribution:

∇xlog p(x, µ, v) =
x− ||x||11
||x||1x

− 1

v||x||1
σ−1(x)− 1⊤[σ−1(x)− µ]

v||x||1
1

We are then in a position to run identical diffusion processes in either the real space, or the probability
simplex.
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Figure 2: Example of identical forward time diffusion process on R2 and S3, where initial points are
on the simplex corners, corresponding to 3 discrete categories. The SDE path becomes lighter as
time progresses. For visual clarity, only the first 50% of the process is shown.

3.2 Probability Flow and Connection to Neural ODEs

The reverse process for continuous time score based SDE models can be used to compute the exact
likelihood of the model. For any diffusion process, there exists a corresponding deterministic process
that satisfies an ODE, which in this case is an example of a neural ode Chen et al. [2018] and takes
the following form

dx =

{
f(x, t)− 1

2
∇ · [G(x, t)G(x, t)⊤]− 1

2
G(x, t)G(x, t)⊤sθ(x, t)

}
︸ ︷︷ ︸

f̄θ(xt,t)

dt (7)

By using the instantaneous change of variables formula, neural ODEs allow for the exact likelihood
to be computed by

log p0(x0) = logT (xT ) +

∫ T

0

∇ · f̄θ(xt, t)dt

where xt is obtained via the solution to the reverse time ODE 7. In practice, we estimate this
quantity by using the Skilling-Hutchinson trace estimator ∇ · f̄θ(xt, t) = Ep(ϵ)[ϵ

⊤∇f̄θ(xt, t)ϵ],
where ∇f̄θ(xt, t) is the Jacobian of f̄θ(xt, t). This estimator is unbiased and can be averaged to
obtain an arbitrarily small error. Furthermore, the Jacobian can be obtained via reverse-mode
automatic differentiation.

3.3 Categorical Data and Bounded Intervals

Discrete data can be naturally modelled by associated n discrete categories with each corner of the
simplex. An example of this can be seen in Figure 2 in the case of n = 3 categories. In practice,
data points cannot be mapped exactly on the probability simplex boundary do to finite numerical
precision. We instead select a small number ϵb ≥ 0 such that discrete categories are mapped from a
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one-hot vector x(k) to
(
1− ϵb − ϵb

d−1

)
x(k) + ϵb

d−11, which data points slightly towards the interior
of the probability simplex.

Our model also has the additional benefit that the case of S2 corresponds to diffusion on the unit
interval. This is ideal for image based data, where each pixel is on the interval [0, 1]3 for each of the
RGB channels. In the typical case when image based diffusion models are used with Gaussian noise,
sampling errors often compound and result in pixel values that are outside the valid data range of
the unit cube. To mitigate this problem, thresholding is often performed to keep generated images to
reasonable values via knowledge of the data distribution constraints Ho et al. [2020] Dhariwal and
Nichol [2021]. While thresholding is popular in many image based diffusion models, it is theoretically
unsound as there is a disconnect between the training and generative processes. Our methodology
provides a natural solution to this problem where the diffusion is constrained to the appropriate data
domain.

4 Related Work

The first proposed diffusion model by Sohl-Dickstein et al. [2015] included the modelling of discrete
data using a binomial diffusion process. The model uses a probabilistic modelling approach with
discrete time intervals. Austin et al. [2021] improved upon this approach by proposing a number
of alternative transition kernels. One drawback of this approach is that transition kernels scale
quadratically with the number of categories, however solutions such as using low rank matrices to
help combat this effect are proposed. Campbell et al. [2022] propose the use of continuous time
transition kernels, which allows for the the use of high performance samplers that can out-perform
the discrete time methods previously mentioned. A drawback of these methods is that unlike the
continuous time SDE approaches, these methods use a bound on the log likelihood and have a more
rigid sampling procedure.

Dirichlet Diffusion Avdeyev et al. [2023] is the first continuous time SDE diffusion methodology
and uses the connection between the Dirichlet distribution and discrete. The target application
for the method is biological sequence generation, however Dirichlet Diffusion can be successfully
applied to other problems as well. Avdeyev et al. [2023] use a Jacobi diffusion process to create a
diffusion process that is Beta distributed, which is then extended to the probability simplex by using
a stick-breaking construction. Sampling from the Jacobi diffusion process is more expensive than the
Gaussian case, which was addressed by pre-computing diffused sampled and log transition density
gradients.

Categorical SDEs with Simplex Diffusion [Richemond et al., 2022] use a diffusion process of Gamma
random variables to sample from a Dirichlet distribution over the simplex. The Dirichlet distribution
is an appealing choice as it is the conjugate prior of the categorical distribution . The forward process
used is the Cox-Ingersoll-Ross process, which is defined by the SDE dθ = b(a− θ)dt+ σ

√
2bθdw,

where θ(t = 0) ≥ 0 and a, b, σ > 0. Simplex Diffusion was attempted to be used for language
modelling Dieleman et al. [2022]. Unfortunately, the very high dimensional vocabulary caused an
uneven data corruption process which caused problems during training that could not be resolved.

Reflected Diffusion Lou and Ermon [2023] is a method of performing diffusion on the unit cube
[0, 1]d that is motivated by applications to pixel-based diffusion models. The authors address this
problem by using a reflected diffusion process that reflects particle trajectories into the interior of
a data domain Ω that would normally extend outside the domain. The model achieves impressive
performance on image generation tasks.

Beta diffusion Zhou et al. [2023] takes an alternative approach to the thresholding problem in image
generation. Similar to the Dirichlet and Simplex Diffusion papers, their method results in beta
distributions in both the forward marginals and reverse conditionals. The authors take the discrete
probabilistic model approach and show that optimization with kl-divergence upper bounds is more
effective than the traditional approach that uses reweighted evidence lower bounds. While all Dirichlet
and Beta methods are able to produce samples on the bounded unit interval, this is the only work that
uses this approach for image generation.
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5 Experiments

5.1 Implimentation Details

For all experiments we choose a noise to signal schedule based on the denoising diffusion probabilistic
models (DDPM) implementation Ho et al. [2020], which is adapted to the continuous domain Song
et al. [2021]. By taking the discrete sequence to the limit, we use β(t) = βmin + t(βmax − βmin),
where t ∈ [0, 1], βmin = 0.1, βmin = 20. This results in the perturbation kernel of a logistic
normal distribution with the parameters of µ =

[
e

1
4 t2(βmax − βmin)− 1

2 tβmin

]
x0 and v = 1 −

e−
1
2 t

2(βmax−βmin)−tβmin .

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

1.0

0.5

0.0

0.5

1.0

1.5
mean
std

Figure 3: Mean and standard deviation parameters of the logistic normal distributions perturbation
kernel when using β(t).

No data augmentations were performed for either experiment. We use a UNet Ronneberger et al.
[2015] model for the score model, with approximately 140M parameters for the CIFAR-10 experiment
and 35M for the MNIST experiment. For both experiments we use T = 2000 discrete time steps
when computing the log-likelihood and generative samples.

5.2 Binarized MNIST

We first benchmark our dataset on binarized MNIST and compare to other likelihood based methods
in Table 1. We compare to DDSM Avdeyev et al. [2023], CR-VAE Li et al. [2023], Locally Masked
PixelCNN Jain et al. [2020], PixelRNN van den Oord et al. [2016], EoNADE Uria et al. [2014],
MADE Germain et al. [2015] and NADE Uria et al. [2016].

Table 1: Binarized MNIST benchmark performance.

METHOD NLL (NATS) ↓
LOGISTIC-NORMAL DIFFUSION 77.92
DDSM 78.04
CR-VAE 76.93
LOCALLY MASKED PIXELCNN 77.58
PIXELRNN 79.20
PIXELCNN 81.30
EONADE 84.68
MADE 86.43
NADE 88.33
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5.3 Unit Interval CIFAR10

In this experiment we treat each pixel of a data point in CIFAR-10 as and RGB value in [0, 1].
Considering the case where the logistic-normal distribution is in S2, we can forget about the implicit
variables that is x1 = 1−x0 and perform one-dimensional diffusion with the logit-normal distribution.
For this experiment we re-scale pixel values to be on the interval [0.1, 0.9] for numerical stability.

We compare to wide variety of diffusion implementations and use the Frechet Inception Distance
as a measure of image generation quality. The following methods are considered: DDPM Ho et al.
[2020], VDM Kingma et al. [2023], Improved DDPM Nichol and Dhariwal [2021], TDPM+ Zheng
et al. [2023], VP-EDM Karras et al. [2022], Soft Diffusion Daras et al. [2022], Blurring Diffusion
Hoogeboom and Salimans [2022], Cold Diffusion Bansal et al. [2022], Inverse Heat Dispersion
Rissanen et al. [2023], D3PM Austin et al. [2021], τ -LDR-10 Campbell et al. [2022], Poisson
Diffusion Chen and Zhou [2023], Zhou et al. [2023].

Table 2: Unit Interval CIFAR-10 FID score comparison with models from various different diffusion
spaces

DIFFUSION SPACE MODEL FID ↓
GAUSSIAN DDPM 3.17

VDM 4.00
IMPROVED DDPM 2.90

TDPM+ 2.83
VP-EDM 1.97

GAUSSIAN + BLURRING SOFT DIFFUSION 3.86
BLURRING DIFFUSION 3.17

DETERMINISTIC COLD DIFFUSION 8.92
INVERSE HEAT DISPERSION 18.96

CATEGORICAL D3PM 7.34
τLDR-10 3.74

COUNT JUMP (POISSON DIFFUSION) 4.80

RANGE-BOUNDED BETA DIFFUSION 3.06
LOGISTIC-NORMAL DIFFUSION 3.72

Overall, we find the our Logistic-Normal diffusion model is capable of competitive performance
on both discrete and unit interval generative modelling tasks. Given that we do not make sure of
advances in diffusion methodology, it is expected that methods like Improved DDPM out-performs
the Logistic-Normal diffusion model. We would like to note however, that modification made to
Gaussian OU diffusion can easily be integrated into our proposed model. A benefit of our model
is faster samping than comparable models such as Beta Diffusion Zhou et al. [2023] or Dirchlet
Diffusion Avdeyev et al. [2023] due to our simple OU process. While our method is suitable for the
binary and low-class discrete modelling case, it scales linearly with the number of discrete categories
and it is unclear how the model will perform in the case of a high dimensional probability simplex.

6 Conclusion

We introduce Logistic-Normal Diffusion, which inherits benefits from the continuous time SDE
diffusion framework such as exact likelihood computation and flexible reverse time sampling. The
framework makes use of direct correspondence between diffusion in Rn the probability simplex using
Ito’s Lemma. Due to the tight relationship, Logistic-Normal Diffusion is able to make use of recent
improvements Karras et al. [2022] Nichol and Dhariwal [2021] to the standard diffusion methodology.
We find the initial results of the model promising and believe that it can be extended to cases outside
computer vision, such as reinforcement learning with discrete environments Janner et al. [2022].
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A Pushing Gaussian Diffusion on the Probability Simplex

A.1 Deriving the SDE with Ito’s Lemma

We would like our SDE to be in the following form to be able to use the score matching method:

dx = f(x, t) dt+G(x, t) dw.

To derive this form, we will use Ito’s Lemma to find the SDE for x:

dxi = σi(z) =

{
−1

2
β(t)(∇zσi(z))

⊤z+
1

2
β(t) Tr [Hzσi(z)]

}
dt+

√
β(t)(∇zσi(z))

⊤ dw

where Hz is the Hessian of σ(z)i with respect to z. To simplify this equation, we will first work with
the gradient of the i-th component of σ(z) and then the Hessian. The time dependence is dropped
during derivations for visual clarity.

A.1.1 Gradient of σi(z) leading to Diffusion Matrix Term

∇zσi(z) = ∇z
ezi

1 +
∑d−1

k=1 e
zk

(∇zσi(z))j =
∂

∂zj

ezi

1 +
∑d−1

k=1 e
zk

There are two different cases to consider, when j = i and when j ̸= i. We consider the first of these
below. For convenience, we will use α(z) = 1 +

∑d−1
k=1 e

zk .

(∇zσi(z))i =
∂

∂zi

ezi

α(z)

= α(z)−2

[
α(z)

∂

∂zi
ezi − ezi

∂

∂zi
α(z)

]
= α(z)−2

[
eziα(z)− e2zi

]
= eziα(z)−1 [α(z)− ezi ]

= σi(z) [1− σi(z)]

= xi(1− xi)

Next, the case when j ̸= i:

(∇zσi(z))j =
∂

∂zj

ezi

α(z)

= −α(z)−2 ∂

∂zj
α(z)ezi

= −α(z)−2eziezj

= −σi(z)σj(z)

= −xixj

At this point, we can notice that Gt(x)i =
√
β(t)∇zσi(z)

⊤ and can write out the full diffusion
matrix Gt(x) as:

G(x) =
√
βJzσ(z)

(Jzσ(z))i,j =

{
xi(1− xi) if i = j

−xixj if i ̸= j

11



A.1.2 Hessian of σi(z) leading to Drift Term

Next we deal with the trace Hessian term:

Tr[HXσi(z)] =

d−1∑
j=1

∂2

∂z2j
σi(X)j

which again can be split into two cases. First we deal with the case when j = i

∂2

∂z2i
σi(z) =

∂

∂zi
σi(z)(1− σi(z))

= σi(z)(1− σi(z))(1− 2σi(z))

= xi(1− xi)(1− 2xi)

Then the case where j ̸= i

∂2

∂z2j
σi(z) = − ∂

∂zj
σi(z)σj(z)

= −σi(z)σj(z)(1− 2σj(z))

= −xixj(1− 2xj)

We can now combine these terms together and simplify:

Tr[HXσi(z)] = xi(1− xi)(1− 2xi) +
∑
j ̸=i

−xixj(1− 2xj)

= xi(1− xi)(1− 2xi)− xi

−xi(1− 2xi) +
∑
j

xj(1− 2xj)


Tr[HXσ(z)] = x(1− x)(1− 2x) + x2(1− 2x)− ∥x(1− 2x)∥1 x

= x(1− 2x)− ∥x(1− 2x)∥1 x

Now we could like to simplify terms to get the drift term ft(x). We must work with the following:

f(x) = −1

2
β(t)(∇zσi(z))

⊤z+
1

2
β(t) Tr [Hzσi(z)]

=
1

2
β(t)

[
x− 2x2 + ∥x(1− 2x)∥1 x− 1√

β(t)
G(x)σ(x)−1

]

In summary, the forwards process for the diffusion on the simplex, where we re-introduce the time
dependence is:

dx = f(x, t) dt+G(x, t) dw

G(x, t) =
√

β(t)Jzσ(z)

(Jzσ(z))i,j =

{
xi(1− xi) if i = j

−xixj if i ̸= j
f(x, t)
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=
1

2
β(t)

[
x− 2x2 + ∥x(1− 2x)∥1 x− 1√

β(t)
G(x, t)σ(x)−1

]

A.2 Reverse Process

The reverse diffusion process is:

dx =
{
ft(x)−∇x · [Gt(x)Gt(x)

⊤]−Gt(x)Gt(x)
⊤∇x log pt(x)

}
dt +Gt(x) dw

where (insert definition of matrix divergence) we are able to use the fact that Gt(x)
⊤ = Gt(x). We

will also drop the dependence on t for visual clarity.

A.2.1 Diffusion Matrix Divergence Term

First, we will simplify the divergence term. To do this, we will begin with the following:

∇x · [G(x, t)G(x, t)⊤]i =
∑
j

∂

∂xj
[G(x, t)G(x, t)⊤]i,j

where we will again split the summation into two cases, when i = j and when i ̸= j. We begin with
the case when i = j, where the diffusion matrix is first expanded:

G(x)2i,i =
∑
k

G(x)i,kG(x)k,i

= G2
i,i +

∑
k ̸=i

Gi,kGk,i

= βx2
i (1− xi)

2 + β(t)x2
i

∑
k ̸=i

x2
k

= βx2
i

(1− xi)
2 +

∑
k ̸=i

x2
k


and then the derivative computed:

∂

∂xi
G(x)2i,i = β

∂

∂xi
x2
i

(1− xi)
2 +

∑
k ̸=i

x2
k


= 2βxi

(1− xi)
2 +

∑
k ̸=i

x2
k

− 2βx2
i (1− xi)

= 2βxi

(1− xi)(1− 2xi) +
∑
k ̸=i

x2
k


Next, the case when i ̸= j. Again, we begin by expanding the diffusion matrix:
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G(x)2i,j = Gi,iGi,j +Gi,jGj,j +
∑
k ̸=i,j

Gi,kGk,j

= β

−x2
ixj(1− xi)− x2

jxi(1− xj) + xixj

∑
k ̸=i,j

x2
k


= −βxixj

xi(1− xi) + xj(1− xj)−
∑
k ̸=i,j

x2
k



and then the sum of derivative terms:

∑
j ̸=i

∂

∂xj
G(x)2i,j = β

∑
j ̸=i

∂

∂xj
− xixj

xi(1− xi) + xj(1− xj)−
∑
k ̸=i,j

x2
k︸ ︷︷ ︸

a(x)



we can approach this by using the product rule. First we will compute the derivative of a(x):

∂

∂xj
a(x) =

∂

∂xj

xi(1− xi) + xj(1− xj)−
∑
k ̸=i,j

x2
k


= (1− 2xj)

and then the derivative of the product:

∑
j ̸=i

∂

∂xj
G(x)2i,j = β

∑
j ̸=i

∂

∂xj
− xixja(x)

= β
∑
j ̸=i

[−xia(x)− xixj(1− 2xj)]

= −βxi

∑
j ̸=i

xi(1− xi) + xj(1− xj) + xj(1− 2xj)−
∑
k ̸=i,j

x2
k


= −(d− 2)βx2

i (1− xi)− βxi

∑
j ̸=i

xj(1− xj) + xj(1− 2xj)−
∑
k ̸=i,j

x2
k


= −(d− 2)βx2

i (1− xi)− βxi

∑
j ̸=i

xj(2− 3xj)−
∑
k ̸=i,j

x2
k



Now we can combine the two cases together to get the full divergence term:
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∇x · [Gt(x)Gt(x)
⊤]i =

∑
j

∂

∂xj
[Gt(x)Gt(x)

⊤]i,j

= 2βxi

(1− xi)(1− 2xi) +
∑
k ̸=i

x2
k


︸ ︷︷ ︸

b1(x)i

− (d− 2)βx2
i (1− xi)︸ ︷︷ ︸

b2(x)i

− βxi

∑
j ̸=i

xj(2− 3xj)−
∑
k ̸=i,j

x2
k


︸ ︷︷ ︸

b3(x)i

To complete this section, we would like to vectorize the equation that we have just derived. We will
work on each part of the equation separately. First, we will consider the term b1(x)i:

b1(x)i = 2βxi

(1− xi)(1− 2xi) +
∑
k ̸=i

x2
k


= 2βxi

[
1− 3xi + 2x2

i − x2
i +

∑
k

x2
k

]
b1(x) = 2βx[x2 − 3x+ (1 + ∥x∥22)1]

The next term can be vectorized as:

b2(x)i = (d− 2)βx2
i (1− xi)

b2(x) = (d− 2)βx2(1− x)

and the final term as:

b3(x)i = βxi

∑
j ̸=i

xj(2− 3xj)−
∑
k ̸=i,j

x2
k


= βxi

∑
j ̸=i

[xj(2− 3xj) + x2
i + x2

j − ∥x∥22]

= (d− 2)β(x2
i − ∥x∥22)xi + βxi

∑
j ̸=i

[xj(2− 3xj) + x2
j ]︸ ︷︷ ︸

b′
3(x)i

where the first term can be easily vectorized. We then continue to work on the second term b′
3(x)i:

b′
3(x)i = βxi

∑
j ̸=i

[2xj − 2x2
j ]

= βxi

[
2x2

i − 2xi + 2∥x∥1 − 2∥x∥22
]

b′
3(x) = 2x2(x− 1) + 2x(∥x∥1 − ∥x∥22)

and write both terms together as:

b3(x) = (d− 2)β(x2 − ∥x∥22)x+ 2x2(x− 1) + 2x(∥x∥1 − ∥x∥22)

Finally, we can combine these terms together to get the full divergence term:
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∇x · [Gt(x)Gt(x)
⊤] = b1(x)− b2(x)− b3(x)

= βx [−(d− 2)x+ (d+ 2)∥x∥2 − 2∥x∥1 + 2]

A.2.2 Score Derivation

The final term that we need to derive is the score term. We will begin by writing out the full equation
for the score:

log p(x) = − log[Z]− log

[
(1− ∥x∥1)

d−1∏
i−1

xi

]
︸ ︷︷ ︸

sa(x)

− 1

2v

∥∥∥∥ log [ x

1− ∥x∥1

]
− µ

∥∥∥∥2
2︸ ︷︷ ︸

sb(x)

We deal with the gradients, starting with the second term (the first one has no gradient).

g := −∇xlog

[
d∏

i=1

xi

]

gi = − ∂

∂xi

(
d−1∑
i=1

log [xi] + log

[
a−

d−1∑
k=1

xk

])

= − 1

xi
+

1

a−
∑d−1

k=1 xk

=
1

xd
− 1

xi

=
xi − xd

xixd

Next, we deal with the exponential term:

h := − 1

2v
∇x

∥∥∥∥log
[
x̄d

xd

]
− µ

∥∥∥∥2
2

hi = − 1

2v

∂

∂xi

(
d−1∑
k=1

(
log

[
xk

xd

]
− µ

)2
)

= − 1

2v

d−1∑
k=1

(
∂

∂u
u2 ∂

∂xi
u

)
, u = log

[
xk

xd

]
− µ

We can just focus on β := ∂
∂uu

2 ∂
∂xi

u for now

β :=
∂

∂u
u2 ∂

∂xi
u

= 2u

(
∂

∂xi
log [xk]−

∂

∂xi
log

[
a−

d−1∑
k=1

xk

])

= 2u

(
δik

1

xi
+

1

xd

)
Combining terms we get:
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hi = −1

v

d−1∑
k=1

(
δik

1

xi
+

1

xd

)(
log

[
x̄d

xd

]
− µ

)

= − 1

vxd

d−1∑
k=1

(
log
[
xk

xd

]
− µ

)
− 1

vxi

(
log
[
xi

xd

]
− µ

)

= − 1

vxd

d−1∑
k=1

γk
µ(x)−

1

vxi
γi
µ(x)

where we write γi
µ(x) = log

[
xi

xd

]
− µ

For the final results, we must combine the h and g terms together to get:

∇xlog pa(x)i = − 1

vxd

d−1∑
k=1

γk
µ(x)−

2

vxi
γi
µ(x) +

xi − xd

xixd

which can be vectorized as:

∇xlog p(x) =
x− ||x||11
||x||1x

− 1

v||x||1
γ(x)− 1⊤[γ(x)− µ]

v||x||1
1
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